Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model
Zulqurnain Sabir,
Muhammad Asif Zahoor Raja,
Juan L.G. Guirao and
Tareq Saeed
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
The aim of this study is to design a singular fractional order pantograph differential model by using the typical form of the Lane-Emden model. The necessary details of the singular-point, fractional order and shape factor of the designed model are also provided. The numerical solutions of the designed model have been presented using the combination of the fractional Meyer wavelet (FMW) neural networks (NNs) modeling and optimization of global search with genetic algorithm (GA) supported with local search of sequential quadratic programming (SQP), i.e., FMWNN-GASQP. The strength of FMWNN is employed to design an objective function using the differential model along with its initial conditions of the singular fractional order pantograph model. The optimization of this objective function is performed using the integrated competence of GA-SQP. The verification, perfection and authentication of the singular fractional order pantograph model using fractional Meyer computing solver is observed for different cases through comparative studies from the available exact solutions which endorsed its robustness, convergence and stability. Moreover, the statistics observation with necessary explanations further authenticate the performance of the FMWNN-GASQP in terms of accuracy and reliability.
Keywords: Singular fractional order pantograph model; Shape factors; Meyer wavelet neural models; Sequential quadratic programming; Genetic algorithm; Statistical analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100758X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s096007792100758x
DOI: 10.1016/j.chaos.2021.111404
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().