Fractal equilibrium configuration of a mechanically loaded binary tree
Javier Rodríguez-Cuadrado and
Jesús San Martín
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
In this paper we study the equilibrium mechanics problem that originates in a binary tree with infinite levels subjected to loads on its topmost branches. The application of the laws of mechanics to find the equilibrium configuration shows that the functional forms of the vertical and horizontal displacements of its end nodes converge to a Takagi curve and a linear combination of inverses of β-Cantor functions respectively as the number of levels tend to infinity. As a consequence, the shape of the canopy results from the combination of these two emerging fractals that were not present in the unloaded tree. Besides, our study also shows that the analytical expressions of the emerging fractals depend on the mechanical properties of the binary tree, indicating that the binary tree is a link between these two emerging fractals. In addition, we prove that the fractal dimensions of Takagi and β-Cantor are related in this model.
Keywords: Takagi curve; β-Cantor function; Principle of virtual work; Fractal binary tree; Equilibrium configuration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921007694
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007694
DOI: 10.1016/j.chaos.2021.111415
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().