Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems
Eda Dagdevir and
Mahmut Tokmakci
Chaos, Solitons & Fractals, 2021, vol. 152, issue C
Abstract:
Electroencephalogram (EEG) signals classification, which are important for brain computer interfaces (BCI) systems, is extremely difficult due to the inherent complexity and tendency to artifact properties of the signals. In this paper, a novel methodology based on Truncation Thresholds (TT) method based Empirical Mode Decomposition (EMD) method and statistical Common Spatial Pattern (CSP) feature extraction method is proposed to classified left and right hand imaginary movements from EEG signals. The TT method is used to change the selected local maximum and minimum points with EMD to distinguish more accurately the hidden information about the motor imagery cover the sub-bands in the frequency domain in addition to remove the blinking electrooculography (EOG) artefacts. TT method is performed to raw EEG signals. Then, statistical spatial features are extracted with CSP method from each Intrinsic Modal Component (IMF) which is created by used the EEG signals with the EMD method. Finally, the extracted features are fed to three different classifiers which are SVM, KNN and LDA. The proposed methodology is applied to our dataset and public BCI Competition IV-2b dataset. The results show that the proposed methodology provides accuracy of 97% and 94% with using LDA classifier for our dataset and with using KNN classifier for BCI Competition IV-2b dataset, respectively.
Keywords: Motor Imagery; EEG; BCI; Signal processing; Classification performance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008043
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008043
DOI: 10.1016/j.chaos.2021.111450
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().