Strongly super-Poisson statistics replaced by a wide-pulse Poisson process: The billiard random generator
Olga A. Chichigina and
Davide Valenti
Chaos, Solitons & Fractals, 2021, vol. 153, issue P1
Abstract:
In this paper we present a study on random processes consisting of delta pulses characterized by strongly super-Poisson statistics and calculate its spectral density. We suggest a method for replacing a strongly super-Poisson process with a wide-pulse Poisson process, while demonstrating that these two processes can be set in such a way to have similar spectral densities, the same mean values, and the same correlation times. We also present a billiard system that can be used to generate random pulse noise of arbitrary statistical properties. The particle dynamics is considered in terms of delta and wide pulses simultaneously. The results of numerical experiments with the billiard system are in a good agreement with the analytical findings.
Keywords: Renewal process; Fluctuation phenomena; Stochastic processes; Billiard-like systems; Super-Poisson statistics; Hardware random number generator (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008055
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008055
DOI: 10.1016/j.chaos.2021.111451
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().