Predicting the chaos and solution bounds in a complex dynamical system
Fengsheng Chien,
Mustafa Inc,
Hamidreza Yosefzade and
Hassan Saberi Nik
Chaos, Solitons & Fractals, 2021, vol. 153, issue P1
Abstract:
The competitive modes for a nonlinear chaotic complex system are studied in this paper. In hyperchaotic, chaotic, and periodic cases, we examined competitive modes that are a tool for detecting chaos in a system. Also, using an analytical method and Lagrange optimization, we were able to calculate the ultimate bound of the nonlinear chaotic complex systems. We have presented is simpler and more accurate than other methods that implicitly calculate the ultimate bound. The estimation of the explicit ultimate bound can be used to study chaos control and chaos synchronization. Numerical simulations illustrate the analytical results.
Keywords: Nonlinear chaotic complex system; Explicit ultimate bound; Lagrange multiplier method; Optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008286
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008286
DOI: 10.1016/j.chaos.2021.111474
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().