FKMAWCW: Categorical fuzzy k-modes clustering with automated attribute-weight and cluster-weight learning
Amin Golzari Oskouei,
Mohammad Ali Balafar and
Cina Motamed
Chaos, Solitons & Fractals, 2021, vol. 153, issue P1
Abstract:
The fuzzy k-modes (FKM) is a popular method for clustering categorical data. However, the main problem of this algorithm is that it is very sensitive to the initialization of primary clusters, so inappropriate initial cluster centers lead to poor local optima. Another problem with the FKM is the equal importance of the attributes used during the clustering process, which in real applications, the importance of the attributes are different, and some attributes are more important than others. Some versions of FKM have been presented in the literature, each of which has somehow solved one of the above problems. In this paper, we propose a new clustering method (FKMAWCW) to solve mentioned problems at the same time. In the proposed clustering process, a local attribute weighting mechanism is used to weight the attributes of each cluster properly. Also, a cluster weighting mechanism is proposed to solve the initialization sensitivity. Attribute weight and cluster weight are learned simultaneously and automatically during the clustering process. In addition, to reduce the noise sensitivity, a new distance function is proposed. So, the proposed algorithm can tolerate noisy environment. Extensive experiments on 11 benchmark datasets and an artificially generated dataset show that the proposed algorithm performs better than the state-of-the-art algorithms. This paper presents mathematical analyses to obtain updating functions, providing the convergence proof of the algorithm. The implementation source code of FKMAWCW is made publicly available at https://github.com/Amin-Golzari-Oskouei/FKMAWCW.
Keywords: Fuzzy k-modes; Attribute weighting; Cluster weighting; Clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008481
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008481
DOI: 10.1016/j.chaos.2021.111494
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().