EconPapers    
Economics at your fingertips  
 

Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities

B.I. Usama, S. Morfu and P. Marquie

Chaos, Solitons & Fractals, 2021, vol. 153, issue P1

Abstract: This work numerically investigates the dynamics of a Chua’s circuit model experiencing a truncated sinusoidal force and driven by an external perturbed excitation. We mainly study the impact of the system’s nonlinearity on the occurrence of Vibrational Resonance (VR) and Ghost-Vibrational Resonance (GVR) phenomena. When a truncated sinusoidal nonlinearity is used, the system requires relatively smaller perturbation amplitude to attain its maximum response better than the one achieved with a sawtooth nonlinearity which requires a larger perturbation amplitude. Therefore, the system with a truncated sinusoidal nonlinearity outperforms the one with a sawtooth nonlinearity. Exciting the system with two low frequency inputs and an additive high frequency perturbation, we identify different ranges of the perturbation amplitude in which the occurrence of VR and GVR phenomena are maximized. We show that depending on the perturbation amplitude, the system can synchronize its response with the ghost frequency or one of the two input low frequencies.

Keywords: Nonlinear dynamics; Multistability; Vibrational resonance; Ghost-vibrational resonance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008699
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008699

DOI: 10.1016/j.chaos.2021.111515

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008699