Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations
Tina Verma and
Arvind Kumar Gupta
Chaos, Solitons & Fractals, 2021, vol. 153, issue P1
Abstract:
Connectivity is the safety network for biodiversity conservation because connected habitats are more effective for saving the species and ecological functions. The nature of coupling for connectivity also plays an important role in the co-existence of species in cyclic-dominance. The rock-paper-scissors game is one of the paradigmatic mathematical model in evolutionary game theory to understand the mechanism of biodiversity in cyclic-dominance. In this paper, the metapopulation model for rock-paper-scissors with mutations is presented in which the total population is divided into patches and the patches form a network of complete graph. The migration among patches is allowed through simple random walk. The replicator-mutator equations are used with the migration term. When migration is allowed then the population of the patches will synchronized and attain stable state through Hopf bifurcation. Apart form this, two phases are observed when the strategies of one of the species mutate to other two species: co-existence of all the species phase and existence of one kind of species phase. The transition from one phase to another phase is taking place due to transcritical bifurcation. The dynamics of the population of species of rock, paper, scissors is studied in the environment of homogeneous and heterogeneous mutation. Numerical simulations have been performed when mutation is allowed in all the patches (homogeneous mutation) and some of the patches (heterogeneous mutation). It has been observed that when the number of patches is increased in the case of heterogeneous mutation then the population of any of the species will not extinct and all the species will co-exist.
Keywords: Evolutionary game theory; Rock-paper-scissors game; Mutation; Cyclic-dominance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008924
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008924
DOI: 10.1016/j.chaos.2021.111538
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().