Economics at your fingertips  

The drivers of systemic risk in financial networks: a data-driven machine learning analysis

Michel Alexandre, Thiago Silva, Colm Connaughton and Francisco A. Rodrigues

Chaos, Solitons & Fractals, 2021, vol. 153, issue P1

Abstract: The purpose of this paper is to assess the role of financial variables and network topology as determinants of systemic risk (SR). The SR, for different levels of the initial shock, is computed for institutions in the Brazilian interbank market by applying the differential DebtRank methodology. The financial institution(FI)-specific determinants of SR are evaluated through two machine learning techniques: XGBoost and random forest. Shapley values analysis provided a better interpretability for our results. Furthermore, we performed this analysis separately for banks and credit unions. We have found the importance of a given feature in driving SR varies with i) the level of the initial shock, ii) the type of FI, and iii) the dimension of the risk which is being assessed – i.e., potential loss caused by (systemic impact) or imputed to (systemic vulnerability) the FI. Systemic impact is mainly driven by topological features for both types of FIs. However, while the importance of topological features to the prediction of systemic impact of banks increases with the level of the initial shock, it decreases for credit unions. Concerning systemic vulnerability, this is mainly determined by financial features, whose importance increases with the initial shock level for both types of FIs.

Keywords: Financial networks; Systemic risk; Complex networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.chaos.2021.111588

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

Page updated 2023-11-08
Handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921009425