Chirped periodic and localized waves in a weakly nonlocal media with cubic-quintic nonlinearity
Houria Triki and
Vladimir I. Kruglov
Chaos, Solitons & Fractals, 2021, vol. 153, issue P2
Abstract:
We study the propagation of one-dimentional optical beams in a weakly nonlocal medium exhibiting cubic-quintic nonlinearity. A nonlinear equation governing the evolution of the beam intensity in the nonlocal medium allows us to examine whether the traveling-waves exist in such optical material. An efficient transformation is applied to obtain explicit solutions of the envelope model equation in the presence of all material parameters. We find that a variety of periodic waves accompanied with a nonlinear chirp do exist in the system in the presence of the weak nonlocality. Chirped localized intensity dips on a continuous-wave background as well as solitary waves of the bright and dark types are obtained in a long wave limit. A class of propagating chirped self-similar solitary beams is also identified in the material with the consideration of the inhomogeneities of media. The applications of the obtained self-similar structures are discussed by considering a periodic distributed amplification system.
Keywords: Optical solitons; Chirped traveling waves; Nonlinear Schrödinger equation (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100850X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p2:s096007792100850x
DOI: 10.1016/j.chaos.2021.111496
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().