Echo state network activation function based on bistable stochastic resonance
Zhiqiang Liao,
Zeyu Wang,
Hiroyasu Yamahara and
Hitoshi Tabata
Chaos, Solitons & Fractals, 2021, vol. 153, issue P2
Abstract:
Stochastic resonance (SR) is a phenomenon wherein an information-carrying signal is enhanced via noise in a nonlinear system. This phenomenon enables living beings to adapt to noisy environments and use environmental noise to obtain useful information. A novel activation function of the echo state network (ESN) based on bistable SR is proposed in this study. Instead of using the tanh activation function—which is representative of the traditional threshold activation function—the bistable SR activation function is used to improve the noise adaptability of the ESN. Further, the proposed activation function provides a short-term memory (STM) ability that is not provided by the widely used threshold activation function, and thus, a physical reservoir can be designed using the proposed function. An STM task and a parity check task are used to verify the short-term memory and nonlinear ability of the bistable SR activation function. Further, two different prediction benchmarks prove that the proposed activation function can improve the noise adaptability of ESN. Finally, a visual recognition task is performed to demonstrate the potential of the SR activation function for physical reservoir computing.
Keywords: Stochastic resonance; Noisy adaptability; Echo state network; Short-term memory; Activation function; Reservoir computing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008572
DOI: 10.1016/j.chaos.2021.111503
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().