EconPapers    
Economics at your fingertips  
 

Integrability and non-linearizability of weak saddles in a cubic Kolmogorov model

Yusen Wu and Cui Zhang

Chaos, Solitons & Fractals, 2021, vol. 153, issue P2

Abstract: This paper is devoted to the integrability and non-linearizability for a cubic Kolmogorov system with three positive equilibria. The necessary and sufficient conditions for each positive equilibrium to be an integrable saddle are given. Furthermore, by careful computation of period constants, we can see that period constant of certain order does not vanish. Therefore, we arrive to the conclusion that the system is not linearizable at the three positive equilibria.

Keywords: Integrability; Non-linearizability; Weak saddles; Cubic Kolmogorov model (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921008687
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008687

DOI: 10.1016/j.chaos.2021.111514

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008687