Determining liquid crystal properties with ordinal networks and machine learning
Arthur A.B. Pessa,
Rafael S. Zola,
Matjaž Perc and
Haroldo V. Ribeiro
Chaos, Solitons & Fractals, 2022, vol. 154, issue C
Abstract:
Machine learning methods are becoming increasingly important for the development of materials science. In spite of this, the use of image analysis in the development of these systems is still recent and underexplored, especially in materials often studied via optical imaging techniques such as liquid crystals. Here we apply the recently proposed method of ordinal networks to map optical textures obtained from experimental samples of liquid crystals into complex networks and use this representation jointly with a simple statistical learning algorithm to investigate different physical properties of these materials. Our research demonstrates that ordinal networks formed by only 24 nodes encode crucial information about liquid crystal properties, thus allowing us to train simple machine learning models capable of identifying and classifying mesophase transitions, distinguishing among different doping concentrations used to induce chiral mesophases, and predicting sample temperatures with outstanding accuracy. The precision and scalability of our approach indicate it can be used to probe properties of different materials in situations involving large-scale datasets or real-time monitoring systems.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921009619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009619
DOI: 10.1016/j.chaos.2021.111607
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().