The global sliding mode tracking control for a class of variable order fractional differential systems
Jingfei Jiang,
Huatao Chen,
Dengqing Cao and
Juan LG Guirao
Chaos, Solitons & Fractals, 2022, vol. 154, issue C
Abstract:
In this paper, a novel variable order fractional control approach is proposed for tracking control of both of variable order fractional and constant order fractional order system with uncertain and external disturbance terms. In term of the global sliding mode control theory and terminal sliding mode control method, the system states are guaranteed to stay on the switching surface from the initial time, and then converge to the origin by the designed controllers which are continuous input signals. Such controllers avoid the undesirable chattering and remove the effects of uncertain and external disturbance completely. Finally, the comparison between the variable order fraction controller and the constant order fractional controller is given by numerical simulation, furthermore, numerical results on the effects of the tracking control are provided.
Keywords: Fractional systems with uncertain and external disturbance; Tracking control; Global sliding mode control method; Terminal sliding mode control; Chaos control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921010286
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921010286
DOI: 10.1016/j.chaos.2021.111674
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().