A machine learning based control of chaotic systems
P. García
Chaos, Solitons & Fractals, 2022, vol. 155, issue C
Abstract:
In this work, inspired by symbolic dynamic of chaotic systems and using machine learning techniques, a control strategy for complex systems is designed. Unlike the usual methodologies based on modeling, where the control signal is obtained from an approximation of the dynamical rule, here the strategy rest upon an approach of a function that, from the current state of the system, give the necessary perturbation to bring the system closer to a homoclinic orbit that naturally goes to the target. The proposed methodology is data-driven or can be developed in a model-based context and is illustrated with computer simulations of chaotic systems given by discrete maps, ordinary differential equations and coupled map networks. Results show the usefulness of the design of nonlinear control techniques based on machine learning and numerical approach of homoclinic orbits.
Keywords: Chaos control; Machine learning; Homoclinic orbits (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792100984X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:155:y:2022:i:c:s096007792100984x
DOI: 10.1016/j.chaos.2021.111630
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().