EconPapers    
Economics at your fingertips  
 

Stability analysis of the breathing circle billiard

Xiaoming Zhang, Jianhua Xie, Denghui Li, Zhenbang Cao and Celso Grebogi

Chaos, Solitons & Fractals, 2022, vol. 155, issue C

Abstract: Stability is a fundamental problem in time dependent billiards. In this work, we prove that the breathing circle billiard has invariant tori near infinity preventing the unboundedness of energy when the motion of boundary is regular enough. The proof also implies the boundedness of the energy of all solutions for a new class of Fermi-Ulam model with one of the walls replaced by a potential which is growing to infinity as the position coordinate approaches to the origin. When the motion of boundary is piecewise smooth, the dynamics near infinity is either elliptic or hyperbolic depending on an explicit parameter, which is similar to the results in [11] for the piecewise smooth Fermi-Ulam model. Moreover, we show the existence of unbounded orbits when this parameter is within some intervals. The numerical simulations are supported by our mathematical analysis.

Keywords: KAM Theory; Breathing circle billiard; Fermi acceleration (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921009978
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921009978

DOI: 10.1016/j.chaos.2021.111643

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921009978