Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher–Kolmogorov equation
M. Hosseininia,
M.H. Heydari and
Z. Avazzadeh
Chaos, Solitons & Fractals, 2022, vol. 155, issue C
Abstract:
This paper presents a numerical technique for solving the variable-order fractional extended Fisher–Kolmogorov equation. The method suggested to solve this problem is based on the orthonormal shifted discrete Legendre polynomials and the collocation method. First, we expand the unknown solution of the problem using the these polynomialss. Also, we approximate the second- and fourth-order classical derivatives, as well as the variable-order fractional derivatives by these basis functions. Then, we substitute these approximations in the equation. Next, we utilize the classical and fractional derivative matrices together with the collocation method to convert the main equation into a system containing nonlinear algebraic equations. We show the correctness of the proposed scheme by providing several numerical examples.
Keywords: Orthonormal shifted discrete Legendre polynomials; Caputo variable-order fractional derivative; Fractional extended Fisher–Kolmogorov equation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077921010833
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010833
DOI: 10.1016/j.chaos.2021.111729
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().