EconPapers    
Economics at your fingertips  
 

Time and space generalized diffusion equation on graph/networks

Fernando Diaz-Diaz and Ernesto Estrada

Chaos, Solitons & Fractals, 2022, vol. 156, issue C

Abstract: Normal and anomalous diffusion are ubiquitous in many complex systems [1]. Here, we define a time and space generalized diffusion equation (GDE), which uses fractional-time derivatives and transformed d-path Laplacian operators on graphs/networks. We find analytically the solution of this equation and prove that it covers the regimes of normal, sub- and superdiffusion as a function of the two parameters of the model. We extend the GDE to consider a system with temporal alternancy of normal and anomalous diffusion which can be observed for instance in the diffusion of proteins along a DNA chain. We perform computational experiments on a one-dimensional system emulating a linear DNA chain. It is shown that a subdiffusive-superdiffusive alternant regime allows the diffusive particle to explore more slowly small regions of the chain with a faster global exploration, than a subdiffusive-subdiffusive regime. Therefore, an alternancy of sliding (subdiffusive) with hopping and intersegmental transfer (superdiffusive) mechanisms show important advances for protein-DNA interactions.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922000029
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000029

DOI: 10.1016/j.chaos.2022.111791

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000029