EconPapers    
Economics at your fingertips  
 

A stochastic hybrid model with a fast concentration bias for chemotactic cellular attraction

Jaume Ojer, Álvaro G. López, Javier Used and Miguel A.F. Sanjuán

Chaos, Solitons & Fractals, 2022, vol. 156, issue C

Abstract: We reproduce the phenomenon of chemotaxis through a hybrid random walk model in two dimensions on a lattice. The dynamics of the chemoattractant is modelled using a partial differential equation, which reproduces its diffusion through the environment from its local sources. The cell is treated discretely and it is considered immersed in a medium with concentration gradients, so that its path is affected by these chemical anisotropies. Therefore, the direction taken in each iteration of the walk is given by a stochastic process that must be biased by the chemical concentrations, giving preference towards the highest values. For this purpose, we model the intensity of the bias by a single parameter, which is related to how much a cell is attracted to a source and, consequently, how efficient this source is with respect to the cellular capture. Since the model is intended for later hybridization with cellular automata models, a thorough quantitative analysis of the parameter space has been carried out. Finally, we also illustrate the efficiency of the cellular capture due to the concentration sources by using stochastic basins of attraction.

Keywords: Chemotaxis; Random walks; Stochastic basins of attraction; Cellular automata; Fractals (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922000030
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000030

DOI: 10.1016/j.chaos.2022.111792

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000030