Synchronization in coupled integer and fractional-order maps
Sumit S. Pakhare,
Sachin Bhalekar and
Prashant M. Gade
Chaos, Solitons & Fractals, 2022, vol. 156, issue C
Abstract:
Coupled differential equations and coupled maps have been used to model numerous systems in science and engineering. The role of memory in these systems is modelled using fractional calculus. However, different parts of the system may respond to memory in a different manner. We study coupled system in which an integer order system is coupled to a fractional order α system bidirectionally or unidirectionally for various values of α. It is possible to analytically determine the stability of the fixed point for a unidirectionally coupled linear system. It is found to depend on the stability of the fractional system. The stability criterion extends to the nonlinear case as well. If we linearize the nonlinear map around the fixed point, the criterion for the linear case also holds for the stability of the fixed point of coupled nonlinear maps.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922000066
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000066
DOI: 10.1016/j.chaos.2022.111795
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().