EconPapers    
Economics at your fingertips  
 

Weak dissipation drives and enhances Wada basins in three-dimensional chaotic scattering

Diego S. Fernández, Jesús M. Seoane and Miguel A.F. Sanjuán

Chaos, Solitons & Fractals, 2022, vol. 156, issue C

Abstract: Chaotic scattering in three dimensions has not received as much attention as in two dimensions so far. In this paper, we deal with a three-dimensional open Hamiltonian system whose Wada basin boundaries become non Wada when the critical energy value is surpassed in the absence of dissipation. In particular, we study here the dissipation effects on this topological change, which has no analogy in two dimensions. Hence, we find that non-Wada basins, expected in the absence of dissipation, transform themselves into partially Wada basins when a weak dissipation reduces the system energy below the critical energy. We provide numerical evidence of the emergence of the Wada points on the basin boundaries under weak dissipation. According to the paper findings, Wada basins are typically driven, enhanced and, consequently, structurally stable under weak dissipation in three-dimensional open Hamiltonian systems.

Keywords: Chaotic scattering; Open Hamiltonian system; Three-dimensional system; Dissipative system; Wada property; Merging method (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922001023
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922001023

DOI: 10.1016/j.chaos.2022.111891

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922001023