Second-order hyperparameter tuning of model-based and adaptive observers for time-varying and unknown chaotic systems
Selami Beyhan and
Meric Cetin
Chaos, Solitons & Fractals, 2022, vol. 156, issue C
Abstract:
In this paper, a second-order hyperparameter tuning method is proposed to improve the performance of online gradient-descent optimization. Second-order gradient information of a cost function obtained from extremum seeking optimization is embedded into the adaptation of states and parameters. Thus, a faster adaptation capability is provided without computing the inverse Hessian matrix. The convergence property of the adaptation dynamics via proposed hyperparameter is shown using Lyapunov approach. The proposed hyperparameters and conventional learning rates are compared in numerical applications of model-based estimation and adaptive estimation as follows: i) model-based synchronization of chaotic Lü-systems with time-varying parameters is performed by using an efficient nonlinear observer, ii) an adaptive fuzzy neural-network observer based state estimation is conducted for unknown Duffing oscillator. In both cases, online gradient-descent adaptations are boosted using the proposed hyperparameter and conventional learning rates and their capabilities are measured in terms of root-mean squared-error performance. As a result, the proposed hyperparameter tuning method presented more accurate performances where application results are illustrated in figures and in a table.
Keywords: Extremum seeking optimization; Hyperparameter tuning; Synchronization; Adaptive state estimation; Stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922001096
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922001096
DOI: 10.1016/j.chaos.2022.111898
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().