Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation
Xiong-bin Yan,
Zheng-qiang Zhang and
Ting Wei
Chaos, Solitons & Fractals, 2022, vol. 157, issue C
Abstract:
The main purpose of this paper is to identify simultaneously a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation from two points observed data. First of all, using the fixed point theorem, we prove the existence and uniqueness of the solution for the direct problem. Secondly, the stability of the inverse problem is proved and the uniqueness is a direct result of the stability estimate. In addition, we illustrate the ill-posedness of the inverse problem and use a non-stationary iterative Tikhonov regularization method to recover numerically the time dependent potential coefficient and source term. At the same time, we give the existence of the minimizer for the minimization functional. In order to solve the minimization problem, we apply an alternating minimization method to find the minimizer and prove the solving sub-problems are stable on noisy data as well as prove the data fidelity item decreases monotonously with the iterative running. Finally, some numerical examples are provided to shed light on the validity and robustness of the numerical algorithm.
Keywords: Nonlinear inverse problem; Stability and uniqueness; Ill-posedness; Non-stationary iterative Tikhonov regularization method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922001114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001114
DOI: 10.1016/j.chaos.2022.111901
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().