Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods
Somayeh Fouladi and
Mohammad Shafi Dahaghin
Chaos, Solitons & Fractals, 2022, vol. 157, issue C
Abstract:
In this paper to approximate the Heydari–Hosseininia non-singular fractional derivative, we construct the L1-2 discretization by providing the error estimate. The error estimation of the L1 formula is also presented. The scheme uses the local discontinuous Galerkin method combing with the L1/L1-2 formula as spatial and time discretizations, respectively. To investigate the efficiency and accuracy of our scheme, variable-order fractional ordinary differential and 2-dimensional Sobolev equations are proposed. The scheme is second/third-order accurate in time for the L1/L1-2 formula, respectively. Utilizing k, the approximation degree, the rates of convergence in space are reported k+1 when time step chosen τ=hk+12 and τ=hk+13. Our argument is that new approximation L1-2 has less computational cost than the L1 discretization and numerical results would be given to confirm this reduction.
Keywords: L1-2 formula; Variable-order fractional derivative; Local discontinuous Galerkin method; Sobolev equation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922001254
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001254
DOI: 10.1016/j.chaos.2022.111915
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().