Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays
Jingnan Wang,
Hongbin Shi,
Li Xu and
Lu Zang
Chaos, Solitons & Fractals, 2022, vol. 157, issue C
Abstract:
In this paper, a tumor and Lymphatic immune system interaction model with two time delays is discussed in which the delays describe the proliferation of tumor cells and the transmission from immature T lymphocytes to mature T lymphocytes respectively. Conditions for the asymptotic stability of the equilibrium and the existence of Hopf bifurcations are obtained by analyzing the roots of a characteristic equation. The computing formulas for the stability and the direction of the Hopf bifurcating periodic solutions are given. Numerical simulation show that different values of time delays can generate different behaviors, including the stable-state, the periodic oscillation and the chaotic attractors, as well as the coexistence of two periodic oscillations. These theoretical and numerical results not only can be useful for explaining the occurrence of chaotic attractors, but also can help for understanding the biomedical significance corresponding to the interaction dynamics of tumor cells and T lymphocytes.
Keywords: Time delay; Stability; Hopf bifurcation; Tumor-immune (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922001321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001321
DOI: 10.1016/j.chaos.2022.111922
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().