Stability of a time fractional advection-diffusion system
Hassen Arfaoui and
Abdellatif Ben Makhlouf
Chaos, Solitons & Fractals, 2022, vol. 157, issue C
Abstract:
In this paper, we consider a one dimensional advection-diffusion system in Caputo fractional order derivative. Using a Fourier decomposition and the Mittag-Leffler Function (MLF), we prove a new stability results for the solution of a such system. Numerical experiments were carried out at the end of this work to confirm the theoretical results obtained.
Keywords: Advection-diffusion system; Caputo fractional order derivative; Fourier decomposition; Mittag-Leffler function; Stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792200159X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200159x
DOI: 10.1016/j.chaos.2022.111949
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().