Δ-Choquet integral on time scales with applications
Shekhar Singh Negi and
Vicenç Torra
Chaos, Solitons & Fractals, 2022, vol. 157, issue C
Abstract:
The fundamental purpose of this work is to analyze Δ-Choquet integrals on time scales which is a special case of Choquet integral on abstract fuzzy (non-additive) measure space. We first present a Δ-Choquet integral with respect to non-additive Δ-measure or more precisely a distorted Lebesgue Δ-measure on an arbitrary time scale. Consequently, we come up with a more general integral than the standard Choquet integral of continuous and discrete calculus. Its use can be seen as convenient in economics, decision making, artificial intelligence, and many more. Particularly, in economics, most of the models are dynamic models (continuous and/or discrete), and those can be easily studied on time scales. Further, some basic essential results and properties of the general integral are studied. For instance, we discuss translation, homogeneity, linearity, and many more with respect to the functions and measures of the integral.
Keywords: Lebesgue measure; Distorted Lebesgue measure; Time-scale; Lebesgue Δ-measure; Lebesgue Δ-integral; Lebesgue-Stieltjes Δ-measure; Lebesgue-Stieltjes Δ-integral; Choquet integral; Fuzzy measure (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922001795
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001795
DOI: 10.1016/j.chaos.2022.111969
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().