EconPapers    
Economics at your fingertips  
 

Critical parameters of the synchronisation's stability for coupled maps in regular graphs

Juan Gancio and Nicolás Rubido

Chaos, Solitons & Fractals, 2022, vol. 158, issue C

Abstract: Coupled Map Lattice (CML) models are particularly suitable to study spatially extended behaviours, such as wave-like patterns, spatio-temporal chaos, and synchronisation. Complete synchronisation in CMLs emerges when all maps have their state variables with equal magnitude, forming a spatially-uniform pattern that evolves in time. Here, we derive critical values for the parameters – coupling strength, maximum Lyapunov exponent, and link density – that control the synchronisation-manifold's linear stability of diffusively-coupled, identical, chaotic maps in generic regular graphs (i.e., graphs with uniform node degrees) and class-specific cyclic graphs (i.e., periodic lattices with cyclical node permutation symmetries). Our derivations are based on the Laplacian matrix eigenvalues, where we give closed-form expressions for the smallest non-zero eigenvalue and largest eigenvalue of regular graphs and show that these graphs can be classified into two sets according to a topological condition (derived from the stability analysis). We also make derivations for two classes of cyclic graph: k-cycles (i.e., regular lattices of even degree k, which can be embedded in Tk tori) and k-Möbius ladders, which we introduce here to generalise the Möbius ladder of degree k = 3. Our results highlight differences in the synchronisation manifold's stability of these graphs – even for identical node degrees – in the finite size and infinite size limit.

Keywords: Coupled maps; Cyclic graphs; Synchronisation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922002119
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002119

DOI: 10.1016/j.chaos.2022.112001

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002119