Stability and dynamics of complex order fractional difference equations
Sachin Bhalekar,
Prashant M. Gade and
Divya Joshi
Chaos, Solitons & Fractals, 2022, vol. 158, issue C
Abstract:
We extend the definition of n-dimensional difference equations to complex order. We investigate the stability of linear systems defined by an n-dimensional matrix and derive the conditions for the stability of zero solution of linear systems. For the one-dimensional case, we find that the stability region, if any is enclosed by a boundary curve and we obtain a parametric equation for the same. Furthermore, we find that there is no stable region if this parametric curve is self-intersecting. Even for the real eigenvalues, the solutions can be complex and dynamics in one-dimension is richer than the case for real order. These results can be extended to n-dimensions. For nonlinear systems, we observe that the stability of the linearized system determines the stability of the equilibrium point.
Keywords: Fractional difference equation; Complex order; Stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922002739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002739
DOI: 10.1016/j.chaos.2022.112063
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().