Non-Markovian SIR epidemic spreading model of COVID-19
Lasko Basnarkov,
Igor Tomovski,
Trifce Sandev and
Ljupco Kocarev
Chaos, Solitons & Fractals, 2022, vol. 160, issue C
Abstract:
We introduce non-Markovian SIR epidemic spreading model inspired by the characteristics of the COVID-19, by considering discrete- and continuous-time versions. The distributions of infection intensity and recovery period may take an arbitrary form. By taking corresponding choice of these functions, it is shown that the model reduces to the classical Markovian case. The epidemic threshold is analytically determined for arbitrary functions of infectivity and recovery and verified numerically. The relevance of the model is shown by modeling the first wave of the epidemic in Italy, Spain and the UK, in the spring, 2020.
Keywords: Epidemic spreading models; Non-Markovian processes; COVID-19; SIR model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922004969
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004969
DOI: 10.1016/j.chaos.2022.112286
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().