Two neural-network-based methods for solving elliptic obstacle problems
Xinyue Evelyn Zhao,
Wenrui Hao and
Bei Hu
Chaos, Solitons & Fractals, 2022, vol. 161, issue C
Abstract:
Two neural-network-based numerical schemes are proposed to solve the classical obstacle problems. The schemes are based on the universal approximation property of neural networks, and the cost functions are taken as the energy minimization of the obstacle problems. We rigorously prove the convergence of the two schemes and derive the convergence rates with the number of neurons N. In the simulations, two example problems (both 1-D and 2-D) are used to verify the convergence rate of the methods and the quality of the results.
Keywords: Obstacle problems; Free boundary problems; Neural networks; Convergence rate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922005239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005239
DOI: 10.1016/j.chaos.2022.112313
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().