A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population
Pushpendra Kumar,
V. Govindaraj and
Vedat Suat Erturk
Chaos, Solitons & Fractals, 2022, vol. 161, issue C
Abstract:
In the history of mathematical modeling, a number of deadly diseases in humans, animals, birds, and plants have been studied by using various types of mathematical models. In this group, the cavity is a dental infection, which is found in thousands of humans. Nowadays, a cavity is the most common disease in human teeth. As per our knowledge, to date, there is no mathematical model in the literature to understand the dynamics of the cavity. In this article, we fulfill this requirement by defining a non-linear delay-type mathematical model to describe the dynamics of cavities in human teeth. First, we propose an integer-order model and check the boundedness and positivity of the solution, and equilibrium points with their local and global asymptotically stability. After that, we generalize the integer-order delay-type model into a fractional sense to capture the memory effects. We prove the existence of a unique global solution of the fractional-order model in the Caputo derivative sense. The numerical solution of the proposed fractional-order model is given with the help of the predictor-corrector method. We do the all necessary graphical simulations to understand the model dynamics appropriately. The main motivation of this paper is to introduce a first mathematical delay-type model to describe the cavity problem in human teeth.
Keywords: Teeth/tooth; Cavity; Mathematical model; Caputo fractional derivative; Existence and stability; The predictor-corrector scheme (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792200580X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:161:y:2022:i:c:s096007792200580x
DOI: 10.1016/j.chaos.2022.112370
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().