EconPapers    
Economics at your fingertips  
 

Break-up of invariant curves in the Fermi-Ulam model

Joelson D.V. Hermes, Marcelo A. dos Reis, Iberê L. Caldas and Edson D. Leonel

Chaos, Solitons & Fractals, 2022, vol. 162, issue C

Abstract: The transport of particles in the phase space is investigated in the Fermi-Ulam model. The system consists of a particle confined to move within two rigid walls with which it collides. One is fixed and the other is periodically moving in time. In this work we investigate, for this model, the location of invariant curves that separate chaotic areas in the phase space. Applying the Slater's theorem we verify that the mapping presents a family of invariant spanning curves with a rotation number whose expansion into continued fractions has an infinite tail of the unity, acting as local transport barriers. We study the destruction of such curves and find the critical parameters for that. The determination of the rotation number in the vicinity of one of the considered spanning curves allowed us to understand the dynamics in the vicinity of the considered curve, both before and after criticality. The rotation number profile showed us the fractal character of the region close to the curve, since this profile has a structure similar to a “Devil's Staircase”.

Keywords: Chaos; Nonlinear dynamics; Mappings; Hamiltonian systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922006208
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006208

DOI: 10.1016/j.chaos.2022.112410

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006208