Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs
Ludovico Minati,
Jim Bartels,
Chao Li,
Mattia Frasca and
Hiroyuki Ito
Chaos, Solitons & Fractals, 2022, vol. 162, issue C
Abstract:
Transistor-based chaotic oscillators are known to realize highly diverse dynamics despite having elementary circuit topologies. This work investigates, numerically and experimentally using a ring network, a recently-introduced dual-transistor circuit that generates neural-like spike trains. A multitude of non-trivial effects are observed as a function of the supply voltage and coupling strength, including pattern formation under incomplete synchronization and sensitivity to additional long-distance links. Globally-applied noise exerts a synchronizing effect that interacts with the other control parameters. When the network is partitioned in halves at different levels of granularity, their interplay gives rise to adversarial route-to-synchronization phenomena. These results highlight the generative ability of this circuit and motivate its consideration towards the future realization of physical reservoirs.
Keywords: Chaos generation; Pattern formation; Reservoir computing; Spiking dynamics; Synchronization; Transistor (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922006257
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006257
DOI: 10.1016/j.chaos.2022.112415
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().