Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives
Andrew Omame,
Mujahid Abbas and
Abdel-Haleem Abdel-Aty
Chaos, Solitons & Fractals, 2022, vol. 162, issue C
Abstract:
A new non-integer order mathematical model for SARS-CoV-2, Dengue and HIV co-dynamics is designed and studied. The impact of SARS-CoV-2 infection on the dynamics of dengue and HIV is analyzed using the tools of fractional calculus. The existence and uniqueness of solution of the proposed model are established employing well known Banach contraction principle. The Ulam-Hyers and generalized Ulam-Hyers stability of the model is also presented. We have applied the Laplace Adomian decomposition method to investigate the model with the help of three different fractional derivatives, namely: Caputo, Caputo-Fabrizio and Atangana-Baleanu derivatives. Stability analyses of the iterative schemes are also performed. The model fitting using the three fractional derivatives was carried out using real data from Argentina. Simulations were performed with each non-integer derivative and the results thus obtained are compared. Furthermore, it was concluded that efforts to keep the spread of SARS-CoV-2 low will have a significant impact in reducing the co-infections of SARS-CoV-2 and dengue or SARS-COV-2 and HIV. We also highlighted the impact of three different fractional derivatives in analyzing complex models dealing with the co-dynamics of different diseases.
Keywords: COVID-19; Dengue; HIV; Co-infection; Laplace Adomian Decomposition Method; Stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922006373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006373
DOI: 10.1016/j.chaos.2022.112427
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().