Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay
Xubin Jiao,
Xiaodi Li and
Youping Yang
Chaos, Solitons & Fractals, 2022, vol. 162, issue C
Abstract:
In this paper, the Leslie-Gower model with nonmonotonic functional response is extended to a nonsmooth Filippov control system to reflect the integrated pest management. Different from traditional Filippov models, here, we incorporate time delay as to account for predator maturity time. The stability of the equilibria and the existence of Hopf bifurcation of the subsystems are investigated. Moreover, sliding mode dynamics and regular/virtual/pseudoequilibria are analyzed. Numerical simulations indicate that all solutions finally converge to either the regular equilibrium, the pseudoequilibrium or a stable periodic solution according to different values of time delays and threshold levels. A boundary bifurcation that switches a stable regular equilibrium or a stable limit cycle to a stable pseudoequilibrium can occur. Meanwhile, global bifurcations from the standard periodic solution to the sliding switching bifurcation and then to the crossing bifurcation are obtained as time delay is increased. The results show that Filippov control strategies could effectively control the number of pests under the prescribed threshold, however, time delay may challenge pest control by the occurring of the sliding switching and crossing bifurcations.
Keywords: Filippov control; Leslie-Gower model; Global sliding bifurcation; Time delay; Hopf bifurcation; IPM strategies (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922006464
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006464
DOI: 10.1016/j.chaos.2022.112436
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().