Vegetation covers phase separation in inhomogeneous environments
D. Pinto-Ramos,
S. Echeverría-Alar,
M.G. Clerc and
M. Tlidi
Chaos, Solitons & Fractals, 2022, vol. 163, issue C
Abstract:
Vegetation patterns in arid and semi-arid ecosystems as a self-organized response to resource scarcity is a well-documented issue. Their formation is often attributed to the symmetry-breaking type of instability. In this contribution, we focus on a regime far from any symmetry-breaking instability and consider a bistable regime involving uniformly vegetated covers and a bare state. We show that vegetation populations exhibit non-random two-phase structures where high biomass density regions are separated by sparsely covered areas or even bare soil. These structures are referred to as phase separation vegetation covers. We provide observations of this phenomenon in Gabon, Angola, Argentina, and Mexico. The inhomogeneities in environmental conditions are crucial to explain the origin of phase separation vegetation covers. We derive a simple equation from ecologically relevant models to explain various field observations. The bifurcation diagrams obtained from this model allow us to prove that inhomogeneity in the aridity parameter is a source of resilience for vegetation covers, avoiding collapsing towards a bare state. We characterize the natural observations and the equilibria from the model by using Fourier transform technique, spatial autocorrelation analysis, and size distribution of patches analysis.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007184
DOI: 10.1016/j.chaos.2022.112518
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().