EconPapers    
Economics at your fingertips  
 

Quantum squeezing of vector slow-light solitons in a coherent atomic system

Kai-Yu Huang, Yuan Zhao, Si-Qing Wu, Si-Liu Xu, Milivoj R. Belić and Boris A. Malomed

Chaos, Solitons & Fractals, 2022, vol. 163, issue C

Abstract: We investigate the squeezing of two-component quantum optical solitons slowly moving in a tripod-type atomic system with double electromagnetically induced transparency (EIT). The evolution of the double probe-field envelopes is governed by a vector quantum nonlinear Schrödinger equation, derived from the coupled Heisenberg-Langevin and Maxwell equations. Quantum fluctuations of vector soliton pairs and atomic spin are analysed by means of a direct perturbation approach. Importantly, we find that the quantum squeezing of vector soliton pairs is generated by the giant Kerr nonlinearity, which is provided by EIT, and the outcome of the squeezing can be optimized by the selection of propagation distance and angle. The atomic spin squeezing is found for short propagation distances. The predicted results offer insights into soliton physics and may be useful for entanglement detection.

Keywords: Quantum squeezing; Vector solitons; Giant Kerr nonlinearity; Double electromagnetically induced transparency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007494
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007494

DOI: 10.1016/j.chaos.2022.112557

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007494