EconPapers    
Economics at your fingertips  
 

Fractal and multifractal descriptors restore ergodicity broken by non-Gaussianity in time series

Damian G. Kelty-Stephen and Madhur Mangalam

Chaos, Solitons & Fractals, 2022, vol. 163, issue C

Abstract: Ergodicity breaking is a challenge for biological and psychological sciences. Ergodicity is a necessary condition for linear causal modeling. Long-range correlations and non-Gaussianity characterizing various biological and psychological measurements break ergodicity routinely, threatening our capacity for causal modeling. Long-range correlations (e.g., in fractional Gaussian noise, a.k.a. “pink noise”) break ergodicity—in raw Gaussian series, as well as in some but not all standard descriptors of variability, i.e., in coefficient of variation (CV) and root mean square (RMS) but not standard deviation (SD) for longer series. The present work demonstrates that progressive increases in non-Gaussianity conspire with long-range correlations to break ergodicity in SD for all series lengths. Meanwhile, explicitly encoding the cascade dynamics that can generate temporally correlated non-Gaussian noise offers a way to restore ergodicity to our causal models. Specifically, fractal and multifractal properties encode both scale-invariant power-law correlations and their variety, respectively—features that index the underlying cascade parameters. Fractal and multifractal descriptors of long-range correlated non-Gaussian processes show no ergodicity breaking and hence, provide a more stable explanation for the long-range correlated non-Gaussian form of biological and psychological processes. Fractal and multifractal descriptors offer a path to restoring ergodicity to causal modeling in these fields.

Keywords: Causality; Far-from-equilibrium; Heterogeneity; Lognormality; Nonequilibrium; Stationarity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007597
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007597

DOI: 10.1016/j.chaos.2022.112568

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007597