Frequency modes of unstable spiral waves in two-dimensional Rosenzweig–MacArthur ecological networks
P.G. Legoya,
A.S. Etémé,
C.B. Tabi,
A. Mohamadou and
T.C. Kofané
Chaos, Solitons & Fractals, 2022, vol. 164, issue C
Abstract:
The existence of two frequency regimes in a two-dimensional (2D) Rosenzweig–MacArthur ecological network is debated. The semi-discrete approximation differentiates the two regimes, each described by a 2D complex Ginzburg–Landau equation. Using the standard theory of the linear stability analysis, a generalized expression for the modulational instability growth rate is derived for each frequency mode. The parametric study of the growth rate of modulational instability reveals its sensitivity to the changes in the recruitment rate of the resources. Moreover, direct numerical simulations are carried out to confirm our analytical results. Over the prolonged evolution of the perturbed plane wave solution, the high-frequency mode entertains spiral wave patterns. In contrast, the appearance of target waves manifests the low-frequency regime. In that context, we further explore the impact of the recruitment rate of resources and give the qualitative meaning of the obtained dynamical behaviors and their ecological implications. This work may additionally provide more insight into the mechanism leading to spiral and target waves in environmental systems.
Keywords: Rosenzweig–MacArthur ecological network; Modulational instability; High-frequency mode; Low-frequency mode; Spiral wave; Target waves (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007871
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922007871
DOI: 10.1016/j.chaos.2022.112599
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().