Self-excited and hidden attractors in a multistable jerk system
Paulo C. Rech
Chaos, Solitons & Fractals, 2022, vol. 164, issue C
Abstract:
In this paper we investigate a jerk system which is modeled by a homogeneous third-order ordinary differential equation, with four parameters that control the dynamics. The proper choice of one of these parameters allows the system to display real or non-real equilibrium points. This implies that we can choose such a parameter so that the associated attractors are either self-excited or hidden. We consider the two situations, and investigate the dynamics of the two versions of this jerk system, in cross-sections of the three-dimensional parameter-space generated by the other three parameters. We show that both versions of the jerk system display multistability, with coexistence of periodic–periodic, chaotic–chaotic, and periodic–chaotic attractors in the phase-space, regardless of whether the attractors are self-excited or hidden. We also show that basins of attraction and attractors occupy smaller volumes in the case of the system with no equilibrium points.
Keywords: Multistability; Hidden attractor; Self-excited attractor; Lyapunov exponents (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922007986
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922007986
DOI: 10.1016/j.chaos.2022.112614
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().