EconPapers    
Economics at your fingertips  
 

Weak percolation on multiplex networks with overlapping edges

G.J. Baxter, R.A. da Costa, S.N. Dorogovtsev and J.F.F. Mendes

Chaos, Solitons & Fractals, 2022, vol. 164, issue C

Abstract: We solve the weak percolation problem for multiplex networks with overlapping edges. In weak percolation, a vertex belongs to a connected component if at least one of its neighbors in each of the layers is in this component. This is a weaker condition than for a mutually connected component in interdependent networks, in which any two vertices must be connected by a path within each of the layers. The effect of the overlaps on weak percolation turns out to be opposite to that on the giant mutually connected component. While for the giant mutually connected component, overlaps do not change the critical phenomena, our theory shows that in two layers any (nonzero) concentration of overlaps drives the weak percolation transition to the ordinary percolation universality class. In three layers, the phase diagram of the problem contains two lines – of a continuous phase transition and of a discontinuous one – connected in various ways depending on how the layers overlap. In the case of only doubled overlapped edges, two of the end points of these lines coincide, resulting in a tricritical point like that seen in heterogeneous k-core percolation.

Keywords: Complex networks; Critical phenomena; Multilayer networks; Interdependent networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922008013
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008013

DOI: 10.1016/j.chaos.2022.112619

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008013