EconPapers    
Economics at your fingertips  
 

Temperature-controlled propagation of spikes in neuronal networks

Chenggui Yao, Yuangen Yao, Yu Qian and Xufan Xu

Chaos, Solitons & Fractals, 2022, vol. 164, issue C

Abstract: Temperature plays a vital role in the functioning of biological organisms and there often exists an optimal temperature for their best performance. In this work, we investigate the role of temperature on spike propagation in scale-free and small-world neuronal networks, where a single neuron is chosen randomly for receiving a stimulus current. Upon exploiting the dominant phase-advanced driving (DPAD) method, the complex neuronal network is seen as a regular feed-forward multilayer neuronal network. The propagation route is then clearly identified, and many traveling-like waves are formed along the propagation route. Interestingly, we find that temperature not only controls the shortest path of propagation but also regulates the response time of a single neuron. The propagation speed is also maximized for an optimal choice of temperature at which the spike rapidly propagates through the entire neuronal network. Our findings extend the current understanding of the neuronal networks functioning and provide new insights into the existence of an optimal temperature as seen in our experiments on several living biological systems.

Keywords: Neurodynamics; Hodgkin–Huxley model; Spiking neural network; Temperature (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922008463
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008463

DOI: 10.1016/j.chaos.2022.112667

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008463