EconPapers    
Economics at your fingertips  
 

Generic Hölder level sets and fractal conductivity

Zoltán Buczolich, Balázs Maga and Gáspár Vértesy

Chaos, Solitons & Fractals, 2022, vol. 164, issue C

Abstract: Hausdorff dimensions of level sets of generic continuous functions defined on fractals can give information about the “thickness/narrow cross-sections” of a “network” corresponding to a fractal set, F. This lead to the definition of the topological Hausdorff dimension of fractals. In this paper we continue our study of the level sets of generic 1-Hölder-α functions. While in a previous paper we gave the initial definitions and established some properties of these generic level sets, in this paper we provide numerical estimates in the case of the Sierpiński triangle. These calculations give better insight and illustrate why can one think of these generic 1-Hölder-α level sets as something measuring “thickness/narrow cross-sections/conductivity” of a fractal “network”.

Keywords: Hölder continuous function; Level set; Sierpiński triangle; Fractal conductivity; Ramification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792200875X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200875x

DOI: 10.1016/j.chaos.2022.112696

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200875x