Majority networks and consensus dynamics
Eric Goles,
Pablo Medina,
Pedro Montealegre and
Julio Santivañez
Chaos, Solitons & Fractals, 2022, vol. 164, issue C
Abstract:
Consensus is an emergent property of many complex systems, considering this as an absolute majority phenomenon. In this work we study consensus dynamics in grids (in silicon), where individuals (the vertices) with two possible opinions (binary states) interact with the eight nearest neighbors (Moore’s neighborhood). Dynamics emerge once the majority rule drives the evolution of the system. In this work, we fully characterize the sub-neighborhoods on which the consensus may be reached or not. Given this, we study the quality of the consensus proposing two new measures, namely effectiveness and efficiency. We characterize attraction basins through the energy-like and magnetization-like functions similar to the Ising spin model.
Keywords: Consensus; Grids; Cellular automata; Fixed points; Asynchronous iteration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922008761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008761
DOI: 10.1016/j.chaos.2022.112697
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().