Different strategies to confront maize streak disease based on fractional optimal control formulation
Ismail Gad Ameen,
Dumitru Baleanu and
Hegagi Mohamed Ali
Chaos, Solitons & Fractals, 2022, vol. 164, issue C
Abstract:
In this paper, we propose a general formulation for the transmission dynamics of maize streak virus (MSV) pathogen interaction with a pest invasion in the maize plant. The mathematical formalism for this model is dependent on Caputo fractional operator with modification of its parameters. In the considered model, the total population of maize plants is divided into two classes: susceptible, infected maize and the total population of leafhopper vector contains two compartments: susceptible, infected leafhopper vector, with a compartment for MSV pathogen. In addition, this fractional-order model (FOM) is involving the proportion of three controls u1,u2 and u3 which namely respectively prevention, quarantine and chemical control. We present the positivity and boundedness of the projected solutions to assure the feasibility of solutions of this FOM. The control reproduction number (Rc) is derived by next generation matrix (NGM) method and showed graphically the effect of the controls for each proposed strategy on the behavior of Rc. The local stability analysis for all possible equilibrium points (EPs) has been examined in detail. Moreover, the fractional optimal control problem (FOCP) is characterized and fractional necessary optimality conditions (NOCs) are derived by using Pontryagin’s maximum principle (PMP). These NOCs are solved numerically, where the state and co-state equations based on the left Caputo fractional derivative (CFD). We offer four strategies to illustrate the effects of the proposed controls to investigate the preferable strategy for the elimination of maize streak disease (MSD), as each one of these strategies is able to alleviate this disease at a specific time. Finally, simulations are performed utilizing MATLAB with realistic ecological parameter values to demonstrate the obtained theoretical results. Comparative studies illustrated that infection of maize plants can be reduced through the proposed model, which has a significant impact on plant epidemiology.
Keywords: Eco-epidemiology; MSV pathogen; Mathematical modeling; Stability theory; Fractional optimal control problems; Numerical simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922008785
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008785
DOI: 10.1016/j.chaos.2022.112699
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().