On nonlinear dynamics of a fractional order monkeypox virus model
A. El-Mesady,
Amr Elsonbaty and
Waleed Adel
Chaos, Solitons & Fractals, 2022, vol. 164, issue C
Abstract:
In this work, we examine a fractional-order model for simulating the spread of the monkeypox virus in the human host and rodent populations. The employment of the fractional form of the model gives a better insight into the dynamics and spread of the virus, which will help in providing some new control measures. The model is formulated into eight mutually exclusive compartments and the form of a nonlinear system of differential equations. The reproduction number for the present epidemic system is found. In addition, the equilibrium points of the model are investigated and the associated stability analysis is carried out. The influences of key parameters in the model and the ways to control the monkeypox epidemic have been thoroughly examined for the fractional model. To ensure that the model accurately simulates the nonlinear phenomenon, we adapt an efficient numerical technique to solve the presented model, and the acquired results reveal the dynamic behaviors of the model. It is observed that when memory influences are considered for the present model, through Caputo fractional-order derivatives, they affect the speed and time taken by solution trajectories towards steady-state equilibria.
Keywords: Monkeypox virus; Epidemics; Equilibrium points; Stability; Fractional Caputo derivatives; Basic reproduction number (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922008955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008955
DOI: 10.1016/j.chaos.2022.112716
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().