EconPapers    
Economics at your fingertips  
 

Route to chaos in a branching model of neural network dynamics

Rashid V. Williams-García and Stam Nicolis

Chaos, Solitons & Fractals, 2022, vol. 165, issue P1

Abstract: Simplified models are a necessary steppingstone for understanding collective neural network dynamics, in particular the transitions between different kinds of behavior, whose universality can be captured by such models, without prejudice. One such model, the cortical branching model (CBM), has previously been used to characterize part of the universal behavior of neural network dynamics and also led to the discovery of a second, chaotic transition which has not yet been fully characterized. Here, we study the properties of this chaotic transition, that occurs in the mean-field approximation to the kin=1 CBM by focusing on the constraints the model imposes on initial conditions, parameters, and the imprint thereof on the Lyapunov spectrum. Although the model seems similar to the Hénon map, we find that the Hénon map cannot be recovered using orthogonal transformations to decouple the dynamics. Fundamental differences between the two, namely that the CBM is defined on a compact space and features a non-constant Jacobian, indicate that the CBM maps, more generally, represent a class of generalized Hénon maps which has yet to be fully understood.

Keywords: Chaos; Neural networks; Nonlinear dynamics; Boundary conditions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922009183
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009183

DOI: 10.1016/j.chaos.2022.112739

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009183