A singular value decomposition based approach to handle ill-conditioning in optimization problems with applications to portfolio theory
Claudia Fassino,
Maria-Laura Torrente and
Pierpaolo Uberti
Chaos, Solitons & Fractals, 2022, vol. 165, issue P1
Abstract:
We identify a source of numerical instability of quadratic programming problems that is hidden in its linear equality constraints. We propose a new theoretical approach to rewrite the original optimization problem in an equivalent reformulation using the singular value decomposition and substituting the ill-conditioned original matrix of the restrictions with a suitable optimally conditioned one. The proposed novel approach is showed, both empirically and theoretically, to solve ill-conditioning related numerical issues, not only when they depend on bad scaling and are relative easy to handle, but also when they result from almost collinearity or when numerically rank-deficient matrices are involved. Furthermore, our strategy looks very promising even when additional inequality constraints are considered in the optimization problem, as it occurs in several practical applications. In this framework, even if no closed form solution is available, we show, through empirical evidence, how the equivalent reformulation of the original problem greatly improves the performances of MatLab®’s quadratic programming solver and Gurobi®. The experimental validation is provided through numerical examples performed on real financial data in the portfolio optimization context.
Keywords: Numerical stability; Quadratic programming; Portfolio optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922009250
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009250
DOI: 10.1016/j.chaos.2022.112746
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().