EconPapers    
Economics at your fingertips  
 

Conservation laws and some new exact solutions for traffic flow model via symmetry analysis

Sumanta Shagolshem, B. Bira and Subhankar Sil

Chaos, Solitons & Fractals, 2022, vol. 165, issue P1

Abstract: In this paper, we investigate the traffic flow model with congested phase through local and nonlocal symmetry analysis. Firstly, we derive the Lie group of transformations and show that it admits four one-dimensional optimal algebras. Next, by similarity reductions, we construct several exact solutions for each subalgebras as well as analyze the relation of group parameters. Furthermore, we construct a tree representing nonlocally related partial differential equations (PDEs) consisting inverse potential systems (IPS) and potential systems. Then, we prove that the traffic flow model yields one nonlocal symmetry and hence we derive an exact solution for the given system. Moreover, we generate the conservation laws for the governing systems through the nonlinear self-adjoint property. Finally, we study the nonlinear behaviors like weak discontinuity (C1-wave), characteristic shock for the physical model, and the impact of the anticipation factor on their evolutionary behavior graphically.

Keywords: Optimal algebras; Nonlocal symmetries; Exact solutions; Weak discontinuity; Characteristic shock (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922009584
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009584

DOI: 10.1016/j.chaos.2022.112779

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009584